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Talk Outline 

•    Apx. algs. and FPTASs 

•    Stochastic DPs 

•  The 3 curses of dimensionality 

•  Assumptions and hardness results 

•  Constructive results 



  

Relative Approximation 
•  OPT – a minimization problem 
•  OPT(x) – value of problem on instance x  
 

•  A K-apx. alg. A(x) (K>1) returns A(x) ≤ K OPT(x) 
•  A PTAS (Polynomial Time Approximation Scheme) is a              
(1+ ε)-apx. that runs in poly(|x|) time, e.g., O(|x|3/ε ) 
•  An FPTAS (Fully Poly. Time Approximation Scheme) is 
a PTAS that runs in poly(|x|,1/ε) time, e.g., O((|x|/ε)2) 
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FPTASs are considered as the “Holy Grail” among apx.  
algs. because one can get close to opt(x) as much as one 
wants in poly. time 



  

A Very Brief History of FPTASs 
•  Knapsack Problem   

– Horowitz and Sahni [1974] 
–  Ibarra and Kim [1975] 

•  General Frameworks 
– Korte and Schrader [1981] 
– Woeginger [2000] 
– H., Klabjan, Li, Orlin and Simchi-Levi [2014] 

•   Multi-criteria 
– Orlin [1982] 
– Safer and Orlin [1995] 
– Papadimitriou and Yannakakis [2000] 

•  Google Scholar  -- ~7000 listings for FPTASs 
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Inventory management under uncertainty 

Goal: 
•  Minimize total costs given by: production, holding and 

backlogging 
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produce xt demand dt holding/backlogging ht  

t t+1,   …     T 

observe It 

1,    …  
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Stochastic DPs 
Notation: T- number of periods, I∈St - system state,  
x∈At(It) = action,  Dt  random variable 

Objective:  

z*(I1)=minx1∈A1(I1),...,xT∈AT(IT) Σ 
EDt gt (It, xt, Dt)+​𝑔↓𝑇+1 ( ​

𝐼↓𝑇+1 )       (DP) 
Theorem [Bellman 57]: optimal cost is z1(I1) in recursion: 
zt(I) = minx∈At(I) EDt[gt (I, x, Dt)+ zt+1(ft (I, x, Dt))],             
where zt(I) = total opt. cost in periods t,…,T+1 

System dynamics (transition): It+1= ft (It, xt, Dt) 

Single period cost function: gt (It, xt, Dt) 

= It + xt - Dt 

Remark: gt (It, xt, Dt) may be given as oracle (a.k.a black 
boxes) 
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Types of uncertainties/DPs zt(It) = minxt∈At(It) EDt                          
{gt (It, xt, Dt)+ zt+1(ft (It, xt, Dt))} 

Convex DP: gt(·,·,d)  are “convex” and ft(·,·,d) are “linear”  

Non-decreasing DP: gt(I,x,d), ft(I,x,d) are non-decreasing 
in I and monotone in x 

Non-increasing DP: similarly 

Explicitly-stochastic: support and PDF of Dt are given 
explicitly as pairs (dt,i,Prob(Dt =dt,i)) 
Implicitly-stochastic: supports of Dt are given explicitly 
but CDF of Dt are given as oracles 

Data-driven: when supports of Dt are given explicitly 
and samples to true distributions of Dt are available 
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Frameworks for Monotone/Convex DP 

•  Discrete explicit stochastic DP → FPTAS [HKLOS14] 

(δ ,ε)-apx. scheme: observes poly(1/ε,log(1/δ)) data 
points, returns a feasible sol. that with prob. > 1- δ is a (1+ 
ε)-apx.  (Σ, Π)-apx. scheme (Π=1+ε): returns in poly(1/ε,log(1/ Σ)) 
time a feasible sol. with cost ≤ Σ + ΠOPT 
In all of these frameworks the state and action spaces are 
scalars, as well as the random variables 

•  Discrete implicit stochastic DP → FPTAS [H15] 

•  Data-driven DP → (δ ,ε)-apx. scheme [H15] 

•  κ-Lipschitz continuous DP → (Σ, Π)-apx. scheme [HN17] 



  10 / 30 

Applications 

Applied to derive (first) FPTAS/approximation schemes 
for:   
• logistics and supply chain management (lotsizing…) 
• knapsack (improves upon Discrete nonlinear [Ho95],   
continuous nonlinear [CERSW05], stochastic [DGV04]) 
• machine/project scheduling 
• revenue management 
• economics and financial engineering 
• approximate counting – integer knapsack, m-tuples and   
2-contingency tables 
• more are emerging… 



  

Inventory management - revisited 
Problem archetype: 
•  Consider the problem of managing a resource of non-discrete 

nature at a central storing facility, over a finite time horizon T 
•  The state It  of the system is the amount of the resource at the 

central facility 
•  At any stage t there is an unknown arrival of resource, e.g., cargo 

ships, described by a random variable 
•  There are m locations that consume resource, but do not have 

storing capacity. Their demand is given by continuous r.v.s 
•  At any stage t the resource can be moved over a capacitated flow 

network, potentially with losses over the arcs 
•  Unused resource at the central storing facility carries over to the 

next time period (but is lost at the m locations) 
Goal: 
•  Minimize total costs given by: transportation, storage and 

shortage at each location 
11 / 30 
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The 3 Curses of Dimensionality 

1.  The state space. If St=(St1,…,StI) and 
each Sti can take on L values then 
have LI different states 

2.  The outcome space. If Dt=(Dt1,…,DtJ) 
and each Dtj can take on M values 
then have MJ different outcomes 

3.  The action space. If Xt=(Xt1,…,XtK) 
and each Xtk can take on N values 
then have NK different actions 
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Discrete Convexity 
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Tackling the Curses of Dimensionality – 
An overview 

Thm. Can deal with multi-dim separable convex functions 

Thm. Miller’s discrete convex functions cannot be 
approximated even in R2, monotone and (Σ, Π)-apx  

Thm. Discrete convex extensible functions cannot be 
approximated even in R2, monotone and (Σ, Π)-apx  

Still Open. Remaining 5 classes of discrete convex functions 

Thm. Can deal with multi-dim outcome spaces if appear in 
transition functions as affine combinations (via convolutions) 

Thm. Can deal with multi-dim action spaces if single-period 
cost functions are linear (via parametric LP) 



Assumptions (1) 

Intuitive explanation: 
•  We require that the state space is a (single-dimensional) 

interval. This is necessary because of hardness results for two-
dimensional problems (discussed later) 

•  We require that the optimal action can be computed as the 
solution of a r.h.s.-parametric LP, where the r.h.s. parameter is 
the (scalar) state. This is consistent with our inventory problem 
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Assumptions (2) 

Intuitive explanation: 
•  We need r.v.s with bounded support and positive probability 

mass at the endpoints so that we can approximately compute 
expectations in finite time 

•  We require independence due to hardness results in the non-
independent case [HKLOS14] 
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Assumptions (3) 

Intuitive explanation: 
•  We need, in general, nonnegative Lipschitz-continuous convex 

functions (may be black boxes) to compute an approximation 
•  Nonnegativity cannot be dropped due to hardness result [HNO18] 

•  The affine transition function preserves convexity 17 / 30 



  

Hardness of approximation in 2D 
Remark. The assumption that the state space is an interval on 
the real line is very restrictive. Can we get rid of it? 
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Thm. Let A,U∈Z+, and let ϕ : [1,U]2 →[A,A+U] be a 
nondecreasing convex function described as a pointwise 
maximum of hyperplanes. Then, any approximation of ϕ that 
attains relative error less than (A+1)/A , or absolute error less 
than 1, requires Ω(√U) space, regardless of the scheme used to 
represent the function 

Idea of the proof.   
•  Construct a family of Ω(2√U) convex functions, all of which take the 

value A at different parts of the integer lattice in the domain, and at least 
A+1 everywhere else.  

•  Any approximation must distinguish between functions of this family 



  

Hardness of apx. of multidimensional DP 
Consider the following multidimensional generalization of 
problem (DP): 
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Cor. There does not exist a PTAS for continuous DPs of the 
form (MD-DP) with cost functions discribed by a value oracle, 
even if d = 2, T = 0, and g1 is nonincreasing, piecewise linear 
convex and bounded from below by a given positive number 



  

An FPTAS 
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Thm. Given stochastic DP satisfying Assumptions 1, 2, 3 
APXSCHEME(ε) computes a (1+ε)-approximation of the 
optimal value function z1, and runs in time polynomial in 
the binary input size and 1/ε 



  

5 Building blocks 
1.   K-approximation functions and the Calculus of 

Approximation 
2.   K-approximation sets: a framework to compute 

succinct, efficient representation of (structured) 
functions 

3.  An algorithm to efficiently compute approximate 
convolutions of discrete/continuous r.v.s 

4.  An algorithm to efficiently compute approximate 
expected values over r.v.s described by value oracles to 
their CDF 

5.  A proof that all these computations can be done with 
bounded-size numbers, avoiding the exponential growth 
resulting from recursive LP solutions 21 / 30 
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1a. K-approximations of Functions 

•  Assume that functions are non-negative, i.e., 
φ(x) ≥ 0 ∀x∈ [0, U]  

•  We say that φ*(·) is a K-approximation of φ(·) if 
     φ(x) ≤ φ*(x) ≤ Kφ(x),   ∀x ∈ [0, U] 
•  We denote it as     φ* ≅K φ  
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1b. Calculus of K-apx. Functions 
Let α,β ≥ 0, φi* ≅Ki

 φi , and K1 ≥ K2 

Corollary: (mimization of summation of composition)      
Let gt*, z*t+1 be K1,K2-apx. functions of gt, zt+1 (K1≥ K2) then        
zt*(I)=minx∈At(I){gt*(x)+z*t+1(I+x))} is a K1-apx of zt(I)  

zt(I) = min x∈At(I)  {gt (x) + zt+1(I+x)} 

Operation name Operation and apx. ratio 

summation α+βφ1
*+φ2

* ≅K1
 α+βφ1+φ2  

minimization min{φ1
*, φ2

*} ≅K1
 min{φ1, φ2} 

composition φ1
*(ψ) ≅K1

 φ1(ψ) 

approximation φ2
* ≅K1 K2

 φ1 when φ2= φ1
* 
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2a. K-approximation Sets  

Definition: Let φ:[0,...,U]→Z+ be monotone/convex. 
A K-apx. set of φ is W⊂ D with argminφ,0,U∈W and 
ratio between values of φ on each two consecutive 
points in W is at most K=1+ ε 

φ 

φ* 

Construction: φ* is the apx. of φ induced by W: 

W ≤ K 

≤ K 
Thm:  K-apx. set of φ can be of size poly. in the (binary) 
input size and 1/ε, and constructed in such time 
Thm:  φ* - the apx. of φ induced by a K-apx. set of φ is a  
K-apx. function of φ and therefore can be constructed in 
time poly. in the (binary) input size and 1/ε 



25 / 30 

2b. K-approximation Sets 
Powerful framework:  
•  Introduced in [HMOS09] for functions over discrete domains 

•  Extended to functions over continuous domains in [HN16] 

What we need to know: 
•  We have algorithms to construct K-approximation sets for convex or 

monotone nonnegative univariate Lipschitz-continuous functions ϕ 
in polytime 

•  Work under the oracle model for ϕ, i.e., do not require access to 
derivatives, only function values 

•  Since a K-approximation set for function ϕ over domain [A,B] has 
size O(logK(B−A)), interpolation between the points in the 
approximation set is efficient 



  

3. Approximation of the convolution 
Thm. Suppose we are given ℓ truncated continuous r.v.s in [A,B] 
with probability mass γ > 0 at the endpoints. Suppose each r.v. Xi 
admits a Lipschitz-continuous CDF. If X1, . . . ,Xℓ are independent, 
then for any K = 1+ε we can compute a K-approximation set for the 

CDF of Σℓi=1 Xi in time poly. in ℓ, ​1/ε , log (B−A) and  log ​1/γ   
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Main idea:  
•   Proceed by induction Σk

i=1 Xi for k = 1,...,ℓ. 
•  At each step k, construct a K-approximation set for the CDF of    
Σk

i=1 Xi using the one for Σk-1
i=1 Xi , iterating over the points in the 

latter approximation set 

Remark.  Under our assumptions, r.v.s →𝐷𝑡┬ only appear 
through affine 

transformations. Since we now know how to handle Σℓi=1wi →𝐷𝑡,𝑖┬, 
we can 
assume that there is a single random variable at each stage 

zt(It) = minxt∈At(It)  g
It (It, xt) +  

EDt{gDt ( ​𝑓𝐷↓𝑡↑ (It, xt, Dt))+ zt+1(ft (It, xt, 
Dt))} 
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4. Approximation of the expectation 

Issue:  
•  How do we compute expectations efficiently? 
•  Assume that Dt is a truncated continuous r.v. in [A,B] with 

probability mass γ > 0 at the endpoints, and Lipschitz continuous 
CDF. (A similar approach works for discrete r.v.) 

zt(It) = minxt∈At(It)  g
It (It, xt) +  

EDt{gDt ( ​𝑓𝐷↓𝑡↑ (It, xt, Dt))+ zt+1(ft (It, 
xt, Dt))} 
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Is this it? 
•  Let us assume we can compute a piecewise linear convex 

approximation ​𝑧 𝑡+1 of the value function at stage t +1. 
Can we compute it at stage t ? 

•  Define the following mathematical program: 

   where the two inequalities define the action space 
•  Using our techniques to apx. convolutions and expectations, we can 

compute a piecewise linear convex approximation of E ​𝐷𝑡 [...], and 
the problem above can be cast as an LP. 

•  Thanks to the oracle model, we can let ​𝑧 t(It) be our convex 
function ϕ(⋅), and compute a K-approximation set for it. This 
yields the desired ​𝑧 𝑡. But . . .  



  

5. One more obstacle to overcome 
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Size of the numbers: 
•  The backward recursion uses ​𝑧 𝑡+1 to build ​𝑧 𝑡. 
•  The construction requires solving multiple LPs, with input 

data generated through other LPs. 
•  The size of the numbers grows at most polynomially, and 

this is repeated O(T) times, yielding numbers of size 
exponential in T in the worst case. 

How to keep numbers “small”:  
•  Instead of working with ϕ(x), work with αϕ( ​𝑥/𝛽 ) with large but 

polysize α,β. 
•  Show that in the transformed space, there is a fully integer 

approximation set. 
•  Transform back. Number size now depends (mostly) on α,β. 
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Thank you ! 


