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Relative Approximation

* OPT — a minimization problem
* OPT(x) — value of problem on instance x
« A K-apx. alg. A(x) (K>1) returns A(x) < K OPT(x)

* A PTAS (Polynomial Time Approximation Scheme) is a
(1+ ¢)-apx. that runs in poly(|x|) time, e.g., O(|x|**)

* An FPTAS (Fully Poly. Time Approximation Scheme) 1s
a PTAS that runs in poly(|x|,1/¢) time, e.g., O((|x|/€)?)

FPTASSs are considered as the “Holy Grail” among apx.
algs. because one can get close to op#(x) as much as one
wants 1n poly. time
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A Very Brief History of FPTASs

Knapsack Problem

— Horowitz and Sahni [1974]

— Ibarra and Kim [1975]

General Frameworks

— Korte and Schrader [1981]

— Woeginger [2000]

— H., Klabjan, L1, Orlin and Simchi-Levi [2014]
Multi-criteria

— Orlin [1982]

— Safer and Orlin [19935]

— Papadimitriou and Yannakakis [2000]
Google Scholar -- ~7000 listings for FPTASs
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Inventory management under uncertainty

observe /; produce x; demand d; holding/backlogging /;

o T T T

1, t t+1, ... T

Goal:
* Minimize total costs given by: production, holding and
backlogging
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Stochastic DPs

Notation: 7- number of periods, /ES, - system state,
xEA (I;) = action, D; random variable

System dynamics (transition): Ii..= f, (I;, x;, D;) =L+ x,- D,
Single period cost function: g (/;, x;, D;)
Objective:

z¥(L)=ming oy . x 2 gp, &t (Ui, X1, Do)t =D T (e
Theorem lfﬁlélllfmaT%A )]: o%ﬁtmél Cost is z,(1) 1n recursion:

Zt(l) E mlnA)EAt(])(EII))lgf ([9 X, Df)—l_ Zf“‘l(ff (]9 X, Df))]a
where z,(/) = total opt. cost in periods ¢,...,T+1

Remark: g.(/;, x;, D;) may be given as oracle (a.k.a black
boxes)
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zfly) = minszAt(Iz) ED,

Types of uncertainties/DPs (oL, x, Dy e O L, % DY)}

Explicitly-stochastic: support and PDF of D, are given
explicitly as pairs (d, ;,Prob(D;=d, ;)

Implicitly-stochastic: supports of D, are given explicitly
but CDF of D, are given as oracles

Data-driven: when supports of D, are given explicitly
and samples to true distributions of D, are available

Convex DP: g(-,",d) are “convex” and fy(-,-,d) are “linear”

Non-decreasing DP: g(/,x,d), f/(l,x,d) are non-decreasing
in / and monotone 1n x

Non-increasing DP: similarly
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Frameworks for Monotone/Convex DP

Discrete explicit stochastic DP — FPTAS [HKLOS14]
Discrete implicit stochastic DP — FPTAS [H15]

Data-driven DP — (0 ,¢)-apx. scheme [H15]
k-Lipschitz continuous DP — (Z, IT)-apx. scheme [HN17]

(0 ,e)-apx. scheme: observes poly(1/¢,log(1/0)) data
points, returns a feasible sol. that with prob. > 1- 0 is a (1+
e fiphe s icanee (et s-th e istttensniah pailp(l épAogs b))
tunkaesfeasibdel sol tverthiodsh\ZrtablEAP T
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Applications

Applied to derive (first) FPTAS/approximation schemes
1(0)

* logistics and supply chain management (lotsizing...)
 knapsack (1improves upon Discrete nonlinear [Ho935],
continuous nonlinear [CERSWO05], stochastic [DGV04])
* machine/project scheduling

* revenue management

 economics and financial engineering

 approximate counting — integer knapsack, m-tuples and
2-contingency tables

* more are emerging. ..
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Inventory management - revisited

Problem archetype:

* Consider the problem of managing a resource of non-discrete
nature at a central storing facility, over a finite time horizon 7

* The state /; of the system 1s the amount of the resource at the
central facility

* At any stage ¢ there is an unknown arrival of resource, e.g., cargo
ships, described by a random variable

 There are m locations that consume resource, but do not have
storing capacity. Their demand 1s given by continuous r.v.s

* At any stage t the resource can be moved over a capacitated flow
network, potentially with losses over the arcs

* Unused resource at the central storing facility carries over to the
next time period (but 1s lost at the m locations)

Goal:

 Minimize total costs given by: transportation, storage and

shortage at each location 0



The 3 Curses of Dimensionality

Approximate Dynamic
Programming

.\.ﬂ'l‘.ﬂﬂ the Curses of Dimensions

. The state space. If S=(S,,,...,5,,) and

each §,; can take on L values then
have L! different states

. The outcome space. It D=(D,,,...,D,))

and each Dtj can take on M values
then have M different outcomes

. The action space. If X=(X,,,...,X,x)

and each X, can take on N values
then have NX different actions
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Discrete Convexity (===
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Table 1.2. Operations for discrete convez sets and functions (f: function,
S: set; (O: Yes [¢f. Theorem, Prop.], x: No).
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Tackling the Curses of Dimensionality —

An overview
Thm. Can deal with multi-dim separable convex functions

Thm. Miller’s discrete convex functions cannot be
approximated even in R?, monotone and (Z, IT)-apx

Thm. Discrete convex extensible functions cannot be
approximated even in R?, monotone and (2, IT)-apx

Still Open. Remaining 5 classes of discrete convex functions

Thm. Can deal with multi-dim outcome spaces if appear in
transition functions as affine combinations (via convolutions)

Thm. Can deal with multi-dim action spaces if single-period
cost functions are linear (via parametric LP)
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Assumptions (1)

The state spaces . fort =1,...,T +1 are intervals on the real line.

The action spaces &4 (L) := {¥, : A%, > b, + Sg,tlz,i} >0} C RP are

p-dimensional polyhedral sets expressed as the feasible set of a
parametric LP with p variables, where the right-hand side vector is an
affine function of the parameter I, and where A, € Q"*?, and 5;, Op, € Q"
tort =l .... 1.

Intuitive explanation:

* We require that the state space 1s a (single-dimensional)
interval. This 1s necessary because of hardness results for two-
dimensional problems (discussed later)

* We require that the optimal action can be computed as the
solution of a r.h.s.-parametric LP, where the r.h.s. parameter is
the (scalar) state. This 1s consistent with our inventory problem_



Assumptions (2)

Description of random events (simplified)

Foreveryt=1,...,T +1, there is a vector of £ rv.s D, € RY. Each one of
the random variables D, ; satisfies one of the following

(i) 5;)5 is a truncated continuous random variable with compact support
D, = [J_D'g‘im,f)t‘f‘ia"] C R, and its CDF is Lipschitz continuous.

(ii) 53),{ is a discrete random variable with finite support
Dy, c [P, DA R,

t,i ?

Furthermore, Pr(ﬁ;)i = f)';f‘ii“) > 0 and Pr(f)z = 5;‘}3’{) > 0, and the
information about the random events is given via value oracles to the
CDF. All D, ; are independent.

Intuitive explanation:

* We need r.v.s with bounded support and positive probability

mass at the endpoints so that we can approximately compute
expectations in finite time

* We require independence due to hardness results in the non-
independent case [HKLOS14]
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Assumptions (3)

Structure of the functions (simplified)

The terminal cost function g7, 1 : 571 — RT is strictly positive piecewise
linear convex.

The transition function f;([z,i},f)';) 1 SR X Dy — Sy is affine.,

The function g; : % ® % x 2, — R can be expressed as

sh D g3 e (D))

where g!, ¢P are piecewise linear convex, and f2 is affine.

All piecewise linear convex functions are described as the pointwise
maximum of a finite number of hyperplanes.

Intuitive explanation:

* We need, in general, nonnegative Lipschitz-continuous convex
functions (may be black boxes) to compute an approximation

* Nonnegativity cannot be dropped due to hardness result [HNO18]
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Hardness of approximation in 2D

Remark. The assumption that the state space is an interval on
the real line is very restrictive. Can we get rid of 1t?

Thm. Let 4, UEZ", and let ¢ : [1,U]? —>[4,A+U] be a
nondecreasing convex function described as a pointwise
maximum of hyperplanes. Then, any approximation of ¢ that
attains relative error less than (4+1)/4 , or absolute error less
than 1, requires Q(VU) space, regardless of the scheme used to
represent the function

Idea of the proof.

« Construct a family of Q(2V) convex functions, all of which take the
value 4 at different parts of the integer lattice in the domain, and at least
A+1 everywhere else.

* Any approximation must distinguish between functions of this family
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Hardness of apx. of multidimensional DP

Consider the following multidimensional generalization of
problem (DP):

T
(h) = min B} &l m(h), D)+ grei(fr+1) | (MD-DP)

seees T =

subject to: EH :ﬁ(f'},m(f;),ﬁz), Y

where I, € R4 and f, is a vector-valued function.

Cor. There does not exist a PTAS for continuous DPs of the
form (MD-DP) with cost functions discribed by a value oracle,
even if d =2, T'= 0, and g, 1s nonincreasing, piecewise linear
convex and bounded from below by a given positive number
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An FPTAS

Algorithm APXSCHEME(g):

1. K+ Z\Tfl—l—S, 2741 < 8741

2. fort:=7T downto 1 do

3: (W, Fy) + COMPRESSCONVOLUTION(D:, P K).

4. (W, F)+ COMPRESSCONVOLUTION(D;, 82, K).

5. For fixed I, define (W5, G?) + COMPRESSEXPVAL(g?, (1,67L,1),F,)
/* GP(.) is an approximation of E[g? (- + &', + &7 - D;)] ¥/

For fixed I, define (Wz, Z.11) +— COMPRESSEXPVAL (211, (1,0'L,1), F,)
/* Ze11(-) is an approximation of B[z, 1(-+ 8L+ 62 . D,)] ¥/

7. (W, %) < SCALEDCOMPRESSCONV(Z;, [#Mmin o/max| k)
8: return 7;

Thm. Given stochastic DP satisfying Assumptions 1, 2, 3
APXSCHEME(¢e) computes a (1+¢)-approximation of the
optimal value function z,, and runs 1n time polynomial in
the binary input size and 1/¢




1.

5 Building blocks

K-approximation functions and the Calculus of
Approximation

K-approximation sets: a framework to compute
succinct, efficient representation of (structured)
functions

An algorithm to efficiently compute approximate
convolutions of discrete/continuous r.v.s

An algorithm to efficiently compute approximate
expected values over r.v.s described by value oracles to
their CDF

A proof that all these computations can be done with
bounded-size numbers, avoiding the exponential growth
resulting from recursive LP solutions
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la. K-approximations of Functions

e Assume that functions are non-negative, 1.€.,

p(x) =0 Vx& [0, U]
« We say that @ *(*) is a K-approximation of ¢(+) if

P(x) < p*(x) <Kp(x), VYx € [0, U]
« We denote it as P* = @
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1b. Calculus of K-apx. Functions
Letoa,f>0, @;* =k, Pi» and K| > K>

summation atfo, to, *K, atfo, T,

minimization min{¢p,’, p,"} = K min{p,, ¢,}

composition  ¢,'(¥) =, (W)

*

approximation ¢," = &, k, P1 When 9= ¢,

z([) =min vy ) 181 (%) + 2z 1([+X)}

Corollary: (mimization of summation of composition)
Let g/*, z*,1 be K1, K>-apx. functions of g, z;+1 (K1>K>) then

z*(DFminge y )18 ()2 %+1([+x))} 1s a Ki-apx of z(J) u
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2a. K-approximation Sets

Definition: Let ¢.[0,...,U]—Z" be monotone/convex.
A K-apx. set of ¢ 1s WC D with argming,0, UEW and
ratio between values of ¢ on each two consecutive
points 1n /¥ 1s at most K=1+ ¢

Construction: ¢ * 1s the apx. of ¢ induced by W:

@
P

W 0O ~ < K

¥ 40 }SK

Thm: K*aptheseprf of camiokioddizreg pdyapm thet(binary h
1oaptxs1aenattbih/ef ananebiistratbed carsbehchnstructed 1n
time poly. 1n the (binary) mput size and 1/¢
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2b. K-approximation Sets

Powertful framework:
* Introduced in [HMOSO09] for functions over discrete domains

 Extended to functions over continuous domains in [HN16]

What we need to know:

* We have algorithms to construct K-approximation sets for convex or
monotone nonnegative univariate Lipschitz-continuous functions ¢
in polytime

*  Work under the oracle model for ¢, 1.€., do not require access to
derivatives, only function values

* Since a K-approximation set for function ¢ over domain [4, 5] has

size O(log(B—A)), interpolation between the points in the
approximation set 1s efficient u
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3. Approximation of the convolution

Thm. Suppose we are given ¢ truncated continuous r.v.s in [4,B]
with probability mass y > 0 at the endpoints. Suppose each r.v. X,
admits a Lipschitz-continuous CDF. If X, . . . . X, are independent,
then for any K = 1+¢ we can compute a K-approximation set for the

CDF of Z¢._, X in time poly. in ¢, , log(B—A) and log
Main idea:

cach step =
Zt(f?)u A (] gti]zt,gé ) Eé‘ % appcOXfﬂ t> Zer Ut U Xs,
0;} i—1 X; using the one or 1terat1ng over the points in the

latter approximation set

Remark. Under our assumptions, r.v.s only appear
through affine

transformations. Since we now know how to handle X, w! ki



4. Approximation of the expectation

Z{l) =Mil ey ;) 81U, X) T Ep {87 C Uy X, D))z (e (U,
Issué))}
* How do we compute expectations efficiently?
* Assume that D, 1s a truncated continuous r.v. in [4, 5] with
probability mass y > 0 at the endpoints, and Lipschitz continuous
CDF. (A similar approach works for discrete r.v.)

Our approach in a nutshell:

B Suppose we want to compute Ep, (@(x)) with ¢ piecewise linear
convex increasing.

m Compute F, a K-approximation of the CDF of D,. This can be done
in time (roughly) O (¢ logk(B—A)log 7).

m Decompose Ep, (¢(x)) as a finite sum involving F for each piece of
the piecewise linear function ¢.
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Is this it?
« Let us assume we can compute a piecewise linear convex

approximation Z £+ 1 of the value function at stage 7 +1.

Can we compute 1t at stage ¢ ?
» Define the following mathematical program:

Z (Iz) v niln ED: [81 (Ita-—ftaDI) £t+l(ﬁ (II?EI?EI))]

51 =i gbtlz
0,

where the two inequalities define the action space

« Using our techniques to apx. convolutions and expectations, we can

compute a piecewise linear convex approximation of EZZ[...], and

the problem above can be cast as an LP.
» Thanks to the oracle model, we can let Z (/,) be our convex

function ¢(+), and compute a K-approximation set for it. This
vields the desired Z Z. But . . . 28130



S. One more obstacle to overcome

Size of the numbers:
e The backward recursion uses z ¢+1 to build z ¢.
e The construction requires solving multiple LPs, with input

data generated through other LPs.

* The size of the numbers grows at most polynomially, and

this 1s repeated O(7) times, yielding numbers of size
exponential in 7 in the worst case.

How to keep numbers “small”:

Instead of working with $(x), work with ag¢(X,/£’) with large but
polysize a,p.

Show that in the transformed space, there 1s a fully integer
approximation set.

Transform back. Number size now depends (mostly) on a,f.
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Thank you !



